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The use of space-time transformations within the path integral approach to quantum problems has made it
possible to solve some ‘‘complicated’’ problems by their mapping into some simple, solvable, ones. Here we
present a simple example on the possibility of exploiting this technique within the realm of stochastic pro-
cesses, by analyzing the case of overdamped motion in a time-dependent harmonic potential.@S1063-
651X~96!04406-6#

PACS number~s!: 05.40.1j, 02.50.Ey

I. INTRODUCTION

Since the pioneering work of Feynman and Hibbs@1#,
there have been numerous results related with basic aspects
as well as applications of the path integral technique to dif-
ferent problems, but mainly in relation with quantum me-
chanics@2#. However, from a historical point of view, path
integrals were first introduced in the thirties by Wiener to
describe diffusion processes, and later used by Onsager and
Machlup in the description of nonequilibrium and Markovian
stochastic processes@3#. More recently, this technique has
been extensively exploited to discuss several aspects related
with stochastic and nonequilibrium processes and also ex-
tended to describe some non-Markovian stochastic processes
@4#.

One aspect recently studied by several authors concerns
the application of space-time transformations, within the
realm of path integral schemes, in order to ‘‘map’’ a ‘‘diffi-
cult’’ ~in principle unsolvable! problem into a more simple
~solvable! one @5#. One of the most outstanding examples is
the possibility of solving the Coulomb problem, within a
path integral framework, via the so calledDuru-Kleinert
transformations@5#. However the use of these transforma-
tions within the realm of the path integral approach to sto-
chastic processes is scarce or almost inexistent@6#.

In this paper we want to present a simple application of
such a kind of transformations for the case of diffusion in a
time-dependent harmonic potential. It is well known that a
closed expression exists for the transition probability of such
a system@7,8#. Also, a very thorough study of the most gen-
eral Gaussian path integral form can be found in Ref.@9#.
However, our aim is to show, through such a simple ex-
ample, the possibility of exploiting these transformation
techniques, within a path integral framework, in more com-
plicated cases. We will follow the procedure presented in
Felsager’s book@10# for the quantum case, translating it to
the stochastic~i.e., imaginary time! case. In what follows we
present the procedure to be used, the way to get theclassical
~ormost probable! trajectories necessary to write the general

solution~that is reduced to quadratures!, some examples, and
a final discussion.

II. SPACE-TIME TRANSFORMATION

Our starting point is to consider the following Langevin
equation:

ẋ~ t !5h~x,t !1j~ t !, ~1!

wherej(t), as usual, is an additivewhite noise@7#. It is well
known that in one dimension the multiplicative noise prob-
lem can be reduced to the additive one@7#. This corresponds
to describing the overdamped motion of a particle in a time-
dependent potential. In the present case we assume that
h(x,t)52a(t)x. As indicated, in Ref.@2~b!#, the path inte-
gral representation of the transition probability associated
with this Langevin equation is given by

p~xb ,tbuxa ,ta!5E
x~ ta!5xa

x~ tb!5xb
D@x~ t !#

3expF2E
ta

tb
L„x~t!,ẋ~t!,t…dtG . ~2!

Here the stochasticLagrangianor Onsager-Machlupfunc-
tional @3# is given, in a midpoint discretization@2~b!#, by

L~x,ẋ,t !5
1

2D
@ ẋ2h~x,t !#21

1

2

dh~x,t !

dx
. ~3!

Replacing the actual form ofh(x,t), the previous expression
can be expanded to yield:

L~x,ẋ,t !5
1

2D
~ ẋ21a2x212 axẋ!1

1

2
a5Lo1

dF~ t !

dt
,

~4!

F~ t !52
1

2Eta
t

a~ t8!dt81
a~ t !

2D
x2, ~5!

Lo5
1

2D
@ ẋ21@a2~ t !2ȧ~ t !#x2#. ~6!

At this point, as the Lagrangian of our problem is at the
most quadratic inx and ẋ, we can obtain the exact result
through the use of the usual procedure of expanding around
a reference ~classical or most probable! trajectory
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@x(t)5xclas(t)1q(t)# and, besides the problem of getting
such a trajectory, our problem reduces to evaluating the fol-
lowing expression:

p~xb ,tbuxa ,ta!5e2@F~ tb!2F~ ta!#e2So
clas

~ tb ,ta!

3E
q~ ta!50

q~ tb!50
D@q~ t !#e2d2So~ tb ,ta!. ~7!

HereSo
cl(tb,ta) is the action evaluated along the classical

or most probable trajectoryxclas(t). The effective action to be
solved in order to perform the path integral indicated in Eq.
~7! is then:

d2So~ tb ,ta!5
1

2DEta
tbF q̇21S a22 da

dt Dq2Gdt. ~8!

After partial integration, we get

d2So~ tb ,ta!52
1

2DEta
tbFq d2qdt2 2S a22 da

dt Dq2G . ~9!

Hence the path integral in Eq.~7! adopts the form:

p~xb ,tbuxa ,ta!5e2@F~ tb!2F~ ta!#e2So
clas

~ ta ,tb!E
q~ ta!50

q~ tb!50
D@q~ t !#

3expH 1

2DEta
tb
qF d2dt2 2S a22 da

dt D GqJ .
~10!

In order to evaluate this path integral we need to diagonalize
the operator

d2

dt2
2Fa22 da

dt G . ~11!

However, there is an alternative way consisting in perform-
ing a change of variables that transforms the action in Eq.~8!
into the one corresponding to the free diffusion problem. In
following this approach we will make use of the results in
Chap. 5 of Felsager’s book@10#. Let us callf (t) the solution
of the equation

H d2

dt2
2w~ t !J f ~ t !50, ~12!

wherew(t)5a22 da/dt , and with the conditionf (ta)Þ0. It
is easy to verify that

f ~ t !5AexpH 2E
ta

t

a~s!dsJ ~13!

is a solution of Eq.~12! fulfilling the required condition. We
will now use the functionf (t) to perform the change of
variablesq(t)⇒y(t) according to

q~ t !5 f ~ t !E
ta

t ẏ~s!

f ~s!
ds, ~14!

with the conditiony(ta)50. Differentiating the previous ex-
pression we get

q̇~ t !5 ḟ ~ t !E
ta

t ẏ~s!

f ~s!
ds1 ẏ~ t !5

ḟ ~ t !

f ~ t !
q~ t !1 ẏ~ t ! ~15!

that can be inverted yielding

y~ t !5q~ t !2E
ta

t ḟ ~s!

f ~s!
q~s!ds. ~16!

Differentiating once more Eq.~15! we obtain

q̈~ t !5 f̈ ~ t !E
ta

t ẏ~s!

f ~s!
ds1

ḟ ~ t !ẏ~ t !

f ~ t !
1 ÿ~ t !. ~17!

Replacing the last result into the integrand of the exponent in
Eq. ~10!, it can be transformed into

H d2

dt2
2w~ t !J q~ t !5$ f̈ ~ t !2w~ t ! f ~ t !%

3E
ta

t ẏ~s!

f ~s!
ds1

ḟ ~ t !ẏ~ t !

f ~ t !
1 ÿ~ t !.

~18!

Due to Eq.~12!, the first term on the right-hand side~rhs! of
Eq. ~18! vanishes, reducing the effective action in Eq.~8! to

d2So@q~ t !#52
1

2DEta
tb
dt$F~ t ! ḟ ~ t !ẏ~ t !1F~ t ! f ~ t !ÿ~ t !%,

~19!

where

F~ t !5E
ta

t

ds
ẏ~s!

f ~s!
. ~20!

The second term on the rhs of Eq.~19! can be integrated by
parts leading to

d2So@q~ t !#5
1

2DEta
tb
dtS dydt D

2

2
1

2D
@q~ t !ẏ~ t !# ta

tb. ~21!

Due to the boundary conditions att5ta and t5tb , the sec-
ond term of the last equation vanishes and we finally arrive
at the action corresponding to free diffusion. The boundary
conditionsq(ta)5q(tb)50, when written in terms of the
new variabley(t), have the form:

y~ ta!50 ; E
ta

tb
ds

ẏ~s!

f ~s!
50. ~22!

However, the second boundary condition is a nonlocal one
and therefore we shall resort to a special trick in order to
handle it. Such a trick consists in using the identity
d@q(tb)#5(2p)21*2`

` exp@2isq(tb)#ds, in order to formally
introduce the integration over the final endpoint:
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E
q~ ta!50

q~ tb!50
D@q#e2d2So@q~ t !#

5
1

2pEq~ ta!50

q~ tb!arbitrary
D@q#E

2`

`

dse2 isq~ tb!e2d2So@q~ t !#, ~23!

where the integration overs produces thed function that
takes care of the correct boundary condition. Changing the
integration variables@q(t)⇒y(t)# we get

1

2pEy~ ta!50

y~ tb!arbitrary
D@y~ t !#E

2`

`

ds

3expS 2 isH f ~ tb!E
ta

tb
@ ẏ~s8!/ f ~s8!# ds8J D

3expF2 ~1/2D !E
ta

tb
dt~dy/dt!2GdetFdq

dyG . ~24!

As the transformationq(t)⇒y(t) is linear, the Jacobian
det@dq/dy# is independent ofy(t), and the remaining inte-
gral is Gaussian. ‘‘Completing the square’’ we get

5
1

2p
detFdq

dyG E2`

`

ds expH 2 ~D/2! s2f 2~ tb!E
tb

ta
@dt/ f 2~ t !#J

3E
q~ ta!50

q~ tb!arbitrary
D@q~ t !#expF2

1

2DEta
tb
dtS dq

dt D 2G , ~25!

with

q~ t !5y~ t !2 iDs f~ tb!E
ta

t da

f ~a!
. ~26!

The second integral in Eq.~25! is equal to unity as it repre-
sents the probability for finding the free diffusive system
anywhere at timetb . Hence, integrating the first one, we get
the simple expression:

E
q~ ta!50

q~ tb!50
D@q#e2d2So@q~ t !#5F2pDf ~ ta! f ~ tb!E

ta

tb dt

f ~ t !2G2 1/2

.

~27!

Here we have used that the Jacobian is given by
det@dq/dy#5Af (tb)/ f (ta) @10#. The final form for the tran-
sition probability is:

p~xb ,tbuxa ,ta!5e2@F~ tb!2F~ ta!#e2So
clas

~ ta ,tb!

3F2pDf ~ ta! f ~ tb!E
ta

tb dt

f ~ t !2G2 1/2

. ~28!

Clearly, the expression for this transition probability con-
tains the results for free diffusion@v(t)50, f (t)51# and
diffusion in a constant harmonic potential$v(t)5v2

5ct., f (t)5cosh@v(t2ta)#%. In the general case, the function
f (t)is given by Eq.~13!. It is worth remarking that the result
in Eq. ~28! is in complete agreement with those obtained by
previous authors by other means~see for instance@9#!.

In order to completely solve the problem, i.e., to have the
transition probability in Eq. ~28!, we shall evaluate
So
clas(tb ,ta)5So@xclas(t)#, wherexclas(t) is the solution of the
Euler-Lagrange equation

F d2dt2 2S a22 da

dt D Gxclas~ t !5 0 ~29!

fulfilling the ‘‘boundary conditions’’: xclas(ta)5xa and
xclas(tb)5xb . The general form of such a solution is

xclas~ t !5B expF H 2E
ta

t

a~s!dsJ G1g~ t !, ~30!

where g(t) is an independent solution of the equation of
motion that shall be obtained for eacha(t). It is easy to
check that

g~ t !5expS H 2E
ta

t

a~s!dsJ D E
ta

t

dt expS H 2E
ta

t

a~z!dzJ D
~31!

is a convenient form of the desired independent solution. The
knowledge ofxclas(t) allows us to evaluateSo

clas. Hence, we
have reached an expression where, given the form of the
time dependence ofa(t), the complete solution of the prob-
lem is reduced toquadratures. In the next section we will
exploit this general result for a couple of analytically solv-
able examples.

III. ANALYTICAL SOLUTIONS

We propose here a simple method to generate a whole
family of analytical classical solutions. In order to reach this
goal we write the elastic parameter in the following form:

a~ t !5b~ t !1
1

2

b8~ t !

b~ t !
. ~32!

This allows us to find the forms

x1~ t !5
sinh@B~ t !#

Ab~ t !
,

x2~ t !5
cosh@B~ t !#

Ab~ t !
~33!

for the classical solutions. The only condition in order to get
analytical trajectories is thatb(t) must be an integrable func-
tion as we have thatB(t)5* t0

t b(s)ds. With this choice of

a(t), the solution of Eq.~29!, with boundary conditions
xclas(ta)5xa andxclas(tb)5xb , is given by

xclas5
xaAb~ ta!sinh@B~ tb!#2xbAb~ tb!sinh@B~ ta!#

sinh@B~ tb!2B~ ta!#

3
cosh@B~ t !#

Ab~ t !

1
xbAb~ tb!cosh@B~ ta!#2xaAb~ ta!cosh@B~ tb!#

sinh@B~ tb!2B~ ta!#

3
sinh@B~ t !#

Ab~ t !
. ~34!

With these results, the functionF(t) @Eq. ~5!# becomes
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F~ t !52
B~ t !

2
2
1

4
ln@b~ t !#1

a~ t !

2D
x2~ t !. ~35!

Hence the final expresion for the transition probability is

p~xb ,tbuxa ,ta!

5A Ab~ ta!b~ tb!

4pDsinh@B~ tb!2B~ ta!#
S b~ tb!

b~ ta!
D 1/4

3expFB~ tb!2B~ ta!

2 G
3expF 1

2D
@a~ tb!xb

22a~ ta!xa
2#G

3expF21

2D
@xbẋ~ tb!2xaẋ~ ta!#G . ~36!

Here ẋ(ta) and ẋ(tb) are the time derivative ofxclas~t! at ta
and tb , respectively.

A. Examples

It is clear that there are a large number of possibilities of
functional forms forb(t) leading to analytical results. Here,

we start considering the following form for the function
b(t):

b~ t !5
g

t

that yields fora(t) the form

a~ t !5
a

t
,

with a5g2 1
2 . This choice corresponds to a system that

goes asymptotically to free diffusion. With this choice we
can obtain the solution for a whole family of functions cor-
responding to different values ofg. Replacing this form into
the previous expressions yields for the solutionsx1(t) and
x2(t):

x1~ t !.t2a, x2~ t !.t11a,

while for the transition probability we find

p~xb ,tbuxa ,ta!5H 4pDAtatb
2g F S tbtaD

g

2S tatbD
gG J 2 1/2S tbtaD

~a/2!

expF2
a

2D S xb2tb 2
xa
2

ta
D G ~37!

3expF2
1

2D S 2~2a11!xaxbta
atb

a2xb
2@~a11!tb

2a1ta
2a11/tb#2xa

2@~a11!ta
2a1tb

2a11/ta#

ta
2a112tb

2a11 D G
Clearly, wheng50 ~correspondinglya52 1

2! we meet a kind of singular situation. This corresponds to the coalescence of
two ‘‘classical trajectories,’’ and its solution requires a special treatment as we cannot exploit the previous forms for the
classical solution. However, we can overcome this difficulty writing the new solutions as

x1~ t !5At, ~38!

x2~ t !5At ln@ t#.

Using these forms into the previous expressions, leads us to the following form of the propagator

p~xb ,tbuxa ,ta!5F2pDAtatblnS tbtaD G
~2 1/2!S tbtaD

~2 1/4!

expF 1

4D S xb2tb 2
xa
2

ta
D G

3expF 2
1

2D
S xa

Ata
S 11

ln@ tb#

2 D2
xb

Atb
S 11

ln@ ta#

2 D
ln@ tb#2 ln@ ta#

D S xb
Atb

2
xa
Ata

D G
3expF 2

1

2D
S xa

Ata
2

xb

Atb
ln@ tb#2 ln@ ta#

D S xbln@ tb#

Atb
2
xaln@ ta#

Ata
D G . ~39!
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This corresponds to a limit case of the previous propaga-
tor that, however, cannot be obtained from Eq.~37! in a
trivial way.

Here, and for the sake of completeness, we show a couple
of final examples forb(t) that could be of some interest, but
without elaborating on the final form of the propagator.

As the first case, we consider a case that can be reduced to
an oscillator with a frequency that oscillates around a pre-
scribed value:

b~ t !5K1a sinvt ~40!

a~ t !5K1asinvt1
1

2

av cosvt

K1a sinvt
.

In the limit of a!K we reduce to the above indicated case
with a(t)'K1a sinvt.

A second interesting situation is the case when the fre-
quency changes from a given initial value~at t50) to an-
other fixed value~for t→`). We can propose:

b~ t !5K1ae2t/t ~41!

a~ t !5K1ae2t/tF12
1

2t~K1ae2t/t!G .
We see that the limit values correspond toa(0)
5K1a$12@1/2t(K1a)#% anda(`)5K, respectively.

It is clear that, given the forms ofb(t) and a(t), it is
simply to getB(t), and replacing all these functions into
Eqs. ~34!–~36!, we can obtain closed expresions for the
propagators.

IV. CONCLUSIONS

In this paper we have addressed, through a simple case,
the problem of exploiting space-time transformations@5#
within the realm of the path integral approach to stochastic
processes. We have considered as a simple application of
those transformations the problem of diffusion in a time-

dependent harmonic potential. This problem has been stud-
ied, using standard techniques, by other authors@9#. In order
to proceed with the calculation we have profited from the
results for the quantum case as presented in Felsager’s book
@10#, adapting it to the stochastic case.

We have shown the procedure to be used, how to get the
classical or most probabletrajectory ~needed to write the
general solution! and also shown that in this particular case
the general solution is reduced to quadratures. We have pre-
sented the solution for a whole family of analytical solutions
when we write the elastic parameter in a particular form, and
have presented a few examples corresponding to~repulsive
or attractive! potentials that asymptotically go over the free
diffusion case. We have particularized the case of coales-
cence of classical trajectories. Finally, we have included a
couple of other interesting examples. In most of these cases
we have obtained the expression for the final form of the
transition probability or propagator. All these examples indi-
cate some of the possibilities of this approach. What still
remains open is the analysis of the same problem without
exploiting the connection between the Fokker-Planck and
Schrödinger equations, but working in the original non-
Hermitian framework. Clearly, this will be a necessary step
when studying higher dimensional systems. As interesting
applications of the present results we can indicate some time-
dependent problems such as those discussed in Refs.@11–
13#.

However, the main interest will be to apply, adapt, or
extend, the more general form of space-time transformations
@5#, i.e., of the Duru-Kleinert type, within the path integral
approach to stochastic processes, in order to ‘‘map’’ a ‘‘dif-
ficult’’ ~in principle unsolvable! problem into a more simple
~solvable! one. The study of the many aspects of this prob-
lem will be the subject of further work.
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